HAPT2D: High accuracy of prediction of T2D with a model combining basic and advanced data depending on availability.
Author | |
---|---|
Abstract |
:
"Objective" Type 2 diabetes arises from the interaction of physiological and lifestyle risk factors. Our objective was to develop a model for predicting the risk of T2D which could use various amounts of background information. "Research Design and Methods" We trained a survival analysis model on 8483 people from three large Finnish and Spanish data-sets, to predict the time until incident T2D. All studies included anthropometric data, fasting laboratory values, an oral glucose tolerance test (OGTT), and information on co-morbidities and lifestyle habits. The variables were grouped into three sets reflecting different degrees of information availability. Scenario 1 included background and anthropometric information; Scenario 2 added routine laboratory tests; Scenario 3 also added results from an OGTT. Predictive performance of these models was compared with FINDRISC and Framingham risk scores. "Results" The three models predicted T2D risk with an average integrated area under the ROC curve equal to 0.83, 0.87 and 0.90, respectively, compared with 0.80 and 0.75 obtained using the FINDRISC and Framingham risk scores. The results were validated on two independent cohorts. Glucose values and particularly 2h glucose during OGTT (2h-PG) had highest predictive value. Smoking, marital and professional status, waist circumference, blood pressure, age and gender were also predictive. "Conclusions" Our models provide an estimation of patient´s risk over time and outweigh FINDRISC and Framingham traditional scores for prediction of T2D risk. Of note, the models developed in Scenario 1 and 2, only exploited variables easily available at general patient visits. |
Year of Publication |
:
2018
|
Journal |
:
European journal of endocrinology
|
Date Published |
:
2018
|
ISSN Number |
:
0804-4643
|
DOI |
:
10.1530/EJE-17-0921
|
Short Title |
:
Eur J Endocrinol
|
Download citation |